ISO/IEC 17025:2005 Scope #### **Purpose** This document lists the specific methods that Bubble Technology Industries (BTI) performs in accordance with ISO/IEC 17025:2005, *General requirements for the competence of testing and calibration laboratories*. Please note that BTI is not accredited by a third party. Compliance is confirmed through an internal audit program that meets the requirements of ISO 9001:2015 and ISO/IEC 17025:2005. **This scope was not issued by an accreditation body**. All radiochemical analysis methods and survey meter calibration methods, including those not listed below, are performed within a quality management system that is ISO 9001 certified by BSI under certificate number FM 502976. #### **Testing Field: Radiochemical Testing** | Type of Test | Test Object | Test Parameter | Available Isotopes | Method Reference | | |--------------------------------|---|--------------------------|---|--|--| | Gas flow proportional counting | Cloth swipes,
Filter papers,
Cotton swabs | Gross Beta Activity | DU, ¹⁴ C, ¹⁴⁷ Pm, ⁶⁰ Co,
¹³⁷ Cs, ³⁶ Cl, ⁹⁰ Sr/ ⁹⁰ Y, ⁵⁵ Fe,
¹⁹² Ir, ⁹⁹ Tc | Internally-developed methods described in SOPs
BTI-RS-E-3-0004 and BTI-RS-E-3-0005 | | | Gas flow proportional counting | Water (non-drinking) | Gross Beta Activity | ¹³⁷ Cs, ⁶⁰ Co, ³⁶ Cl, ⁹⁰ Sr | Internally-developed methods described in SOPs
BTI-RS-E-3-0034 and BTI-RS-E-3-0005 | | | Gas flow proportional counting | Air filters (filter paper) | Gross Beta Activity | ¹³⁷ Cs, ³⁶ Cl, ⁹⁰ Sr | Internally-developed methods described in SOPs
BTI-RS-E-3-0004 and BTI-RS-E-3-0005 | | | Gamma spectroscopy | Cloth swipes,
Filter papers,
Cotton swabs | Gamma activity | ¹³³ Ba, ¹⁰⁹ Cd, ⁵⁷ Co, ⁷⁵ Se, ²² Na, ¹³⁷ Cs | Internally-developed methods described in SOPs
BTI-RS-E-3-0003 and BTI-RS-E-3-0036 | | | Gamma spectroscopy | Water (non-drinking) | Gross gamma activity | ⁶⁰ Co, ²² Na, ¹³⁷ Cs | Internally-developed methods described in SOPs
BTI-RS-E-3-0034 and BTI-RS-E-3-0036 | | | Gamma spectroscopy | Air filter (charcoal
canister and filter
paper) | Gamma activity | ²² Na, ¹³⁷ Cs | Internally-developed methods described in SOP
BTI-RS-E-3-0036 | | | Liquid scintillation counting | Miscellaneous liquid | Low energy beta activity | ¹⁴ C, ³⁶ Cl, ³ H, ⁶³ Ni | Internally-developed methods described in SOPs
BTI-RS-E-3-0029, BTI-RS-E-3-0010, and
BTI-RS-E-3-0035 | | | Alpha spectroscopy | Miscellaneous solid | Alpha activity | All alpha-emitting radioisotopes ⁽¹⁾ | Internally-developed methods described in SOP
BTI-RS-E-3-0009 | | ⁽¹⁾ All isotopes are counted relative to ²⁴¹Am. Date of issue: 2018-Feb-26 # ISO/IEC 17025:2005 Scope ### **Calibration Field: Ionizing Radiation and Radioactivity Measurements** | Calibration Object | Quantity | Calibration Isotope | Range (H*(10) Rates) | CMC (±) ⁽²⁾ | Method Reference | |----------------------|-----------------------|----------------------------------|-------------------------------|------------------------|---------------------| | Gamma survey meter | Accuracy of dose rate | ¹³⁷ Cs ⁽³⁾ | ~0.50 μSv/h to
~5000 μSv/h | 11% reading | SOP BTI-RS-C-3-0002 | | Neutron survey meter | Accuracy of dose rate | ²⁵² Cf ⁽⁴⁾ | ~3.4 μSv/h to
~170 μSv/h | 13% reading | SOP BTI-RS-C-3-0005 | Date of issue: 2018-Feb-26 ⁽²⁾ The CMC is the calibration and measurement capability of the laboratory. It represents the smallest uncertainty that a customer can expect for a calibration measurement. The estimated uncertainty for a measurement may be higher due to the characteristics of the particular survey meter. CMCs are expanded uncertainties produced using a coverage factor of k = 2, which defines an interval estimated to have a level of confidence of 95%. ⁽³⁾ This source is traceable to the SI through the National Research Council of Canada (NRC). ⁽⁴⁾ This source is traceable to the SI through the National Institute of Standards and Technology (NIST).